Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping.
نویسندگان
چکیده
Geometric distortion caused by B0 inhomogeneity is one of the most important problems for diffusion-weighted images (DWI) using single-shot, echo planar imaging (SS-EPI). In this study, large-deformation, diffeomorphic metric mapping (LDDMM) algorithm has been tested for the correction of geometric distortion in diffusion tensor images (DTI). Based on data from nine normal subjects, the amount of distortion caused by B0 susceptibility in the 3-T magnet was characterized. The distortion quality was validated by manually placing landmarks in the target and DTI images before and after distortion correction. The distortion was found to be up to 15 mm in the population-averaged map and could be more than 20 mm in individual images. Both qualitative demonstration and quantitative statistical results suggest that the highly elastic geometric distortion caused by spatial inhomogeneity of the B0 field in DTI using SS-EPI can be effectively corrected by LDDMM. This postprocessing method is especially useful for correcting existent DTI data without phase maps.
منابع مشابه
Comparison of EPI Distortion Correction Methods in Diffusion Tensor MRI Using a Novel Framework
Diffusion weighted images (DWIs) are commonly acquired with Echo-planar imaging (EPI). B0 inhomogeneities affect EPI by producing spatially nonlinear image distortions. Several strategies have been proposed to correct EPI distortions including B0 field mapping (B0M) and image registration. In this study, an experimental framework is proposed to evaluation the performance of different EPI distor...
متن کاملComparison of EPI Distortion Correction Methods in Diffusion Tensor MRI
Introduction Diffusion weighted images (DWIs) used for Diffusion Tensor (DT) calculation are commonly acquired with Echo-planar imaging (EPI). Unfortunately, EPI is very sensitive to magnetic field (B0 ) inhomogeneities, which result in local geometric distortions in regions close to air-tissue interfaces. These distortions degrade the anatomical accuracy of DT-MRI maps and potentially increase...
متن کاملCo-registration and distortion correction of diffusion and anatomical images based on inverse contrast normalization
Diffusion MRI provides quantitative information about microstructural properties which can be useful in neuroimaging studies of the human brain. Echo planar imaging (EPI) sequences, which are frequently used for acquisition of diffusion images, are sensitive to inhomogeneities in the primary magnetic (B0) field that cause localized distortions in the reconstructed images. We describe and evalua...
متن کاملApplication of K-Space Energy Spectrum Analysis for Inherent and Dynamic B0 Mapping and Distortion Correction in DTI
Introduction Diffusion tensor imaging (DTI) is a powerful technique for the noninvasive characterization of the microstructure of normal and pathological tissue. However, it is typically performed with echo-planar imaging (EPI) and is thus vulnerable to spatial and temporal variations of the static magnetic field (B0) caused by susceptibility effects near air/tissue interfaces, eddy currents in...
متن کاملHuman brain atlas for automated region of interest selection in quantitative susceptibility mapping: Application to determine iron content in deep gray matter structures
The purpose of this paper is to extend the single-subject Eve atlas from Johns Hopkins University, which currently contains diffusion tensor and T1-weighted anatomical maps, by including contrast based on quantitative susceptibility mapping. The new atlas combines a "deep gray matter parcellation map" (DGMPM) derived from a single-subject quantitative susceptibility map with the previously esta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance imaging
دوره 26 9 شماره
صفحات -
تاریخ انتشار 2008